125 research outputs found

    Generalized Functional Responses for Species Distributions

    Get PDF
    Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different conditions because organisms respond nonlinearly to changes in habitat availability. This phenomenon, known as a functional response in resource selection, has been debated extensively in the RSF literature but continues to be ignored by practitioners for lack of a practical treatment. We therefore extend the RSF approach to enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ data from several sampling instances characterized by diverse profiles of habitat availability. By modeling the regression coefficients of the underlying RSF as functions of availability, GFRs can account for environmental change and thus predict population distributions in new environments. We formulate the approach as a mixed-effects model so that it is estimable by readily available statistical software. We illustrate its application using (1) simulation and (2) wolf home-range telemetry. Our results indicate that GFRs can offer considerable improvements in estimation speed and predictive ability over existing mixed-effects approaches

    Expert medico-legal reports: The relationship between levels of consistency and judicial outcomes in asylum seekers in the Netherlands

    Get PDF
    Introduction: If asylum applicants need to prove that they have been persecuted in their home country, expert judgment of the psychological and physical consequences of torture may support the judicial process. Expert medico-legal reports can be used to assess whether the medical complaints of the asylum seeker are consistent with their asylum account. It is unclear which factors influence medical expert judgement about the consistency between an asylum seeker’s symptoms and story, and to what extent expert medico-legal reports are associated with judicial outcomes. Methods: We analysed 97 medico-legal reports on traumatised asylum seekers in the Netherlands. First, we evaluated the impact of trauma-related and other variables on experts’ judgments of the consistency of symptoms and story. Second, we evaluated the effect of experts’ judgments of symptom-story consistency on subsequent judicial outcomes. Results: Gender, receipt of mental health care and trauma-related variables were associated with symptomstory consistency. Positive asylum decisions were predicted by expert judgments about the presence of physical signs and symptoms of torture, and ill-treatment and their consistency with the refugee’s story, but not psychological symptoms. Conclusion: These results suggest that standardised procedures for the documenting of medical evidence by independent experts can improve judicial decision quality and the need to improve psychological and psychiatric assessments

    The Influence of Topographic and Dynamic Cyclic Variables on the Distribution of Small Cetaceans in a Shallow Coastal System

    Get PDF
    The influence of topographic and temporal variables on cetacean distribution at a fine-scale is still poorly understood. To study the spatial and temporal distribution of harbour porpoise Phocoena phocoena and the poorly known Risso’s dolphin Grampus griseus we carried out land-based observations from Bardsey Island (Wales, UK) in summer (2001–2007). Using Kernel analysis and Generalized Additive Models it was shown that porpoises and Risso’s appeared to be linked to topographic and dynamic cyclic variables with both species using different core areas (dolphins to the West and porpoises to the East off Bardsey). Depth, slope and aspect and a low variation in current speed (for Risso’s) were important in explaining the patchy distributions for both species. The prime temporal conditions in these shallow coastal systems were related to the tidal cycle (Low Water Slack and the flood phase), lunar cycle (a few days following the neap tidal phase), diel cycle (afternoons) and seasonal cycle (peaking in August) but differed between species on a temporary but predictable basis. The measure of tidal stratification was shown to be important. Coastal waters generally show a stronger stratification particularly during neap tides upon which the phytoplankton biomass at the surface rises reaching its maximum about 2–3 days after neap tide. It appeared that porpoises occurred in those areas where stratification is maximised and Risso’s preferred more mixed waters. This fine-scale study provided a temporal insight into spatial distribution of two species that single studies conducted over broader scales (tens or hundreds of kilometers) do not achieve. Understanding which topographic and cyclic variables drive the patchy distribution of porpoises and Risso’s in a Headland/Island system may form the initial basis for identifying potentially critical habitats for these species

    Establishing the link between habitat selection and animal population dynamics

    Get PDF
    Although classical ecological theory (e.g., on ideal free consumers) recognizes the potential effect of population density on the spatial distribution of animals, empirical species distribution models assume that species–habitat relationships remain unchanged across a range of population sizes. Conversely, even though ecological models and experiments have demonstrated the importance of spatial heterogeneity for the rate of population change, we still have no practical method for making the connection between the makeup of real environments, the expected distribution and fitness of their occupants, and the long-term implications of fitness for population growth. Here, we synthesize several conceptual advances into a mathematical framework using a measure of fitness to link habitat availability/selection to (density-dependent) population growth in mobile animal species. A key feature of this approach is that it distinguishes between apparent habitat suitability and the true, underlying contribution of a habitat to fitness, allowing the statistical coefficients of both to be estimated from multiple observation instances of the species in different environments and stages of numerical growth. Hence, it leverages data from both historical population time series and snapshots of species distribution to predict population performance under environmental change. We propose this framework as a foundation for building more realistic connections between a population's use of space and its subsequent dynamics (and hence a contribution to the ongoing efforts to estimate a species' critical habitat and fundamental niche). We therefore detail its associated definitions and simplifying assumptions, because they point to the framework's future extensions. We show how the model can be fit to data on species distributions and population dynamics, using standard statistical methods, and we illustrate its application with an individual-based simulation. When contrasted with nonspatial population models, our approach is better at fitting and predicting population growth rates and carrying capacities. Our approach can be generalized to include a diverse range of biological considerations. We discuss these possible extensions and applications to real data

    Performance evaluation of a tri-axial accelerometry-based respiration monitoring for ambient assisted living

    Full text link
    Ambient assisted living (AAL) technology is often proposed as a way to tackle the increasing cost of healthcare caused by population aging. However, the sensing technology for continuous respiratory monitoring at home is lacking. Known approaches of respiratory monitoring are based on measuring either respiratory effect, e.g. tracheal sound recording by a bio-acoustic sensor, or respiratory effort, e.g. abdomen movement measurement by a tri-axial accelerometer. This paper proposes a home respiration monitoring system using a tri-axial accelerometer. Three different methods to extract a single respiratory signal from the tri-axial data are proposed and analyzed. The performance of the methods is evaluated for various possible respiration conditions, defined by the sensor orientation and respiration-induced abdomen movement. The method based on principal component analysis (PCA) performs better than selecting the best axis. The analytical approach called full angle shows worse results than the best axis when the gravity vector is close to one of the sensor's axes

    Under Pressure: Cetaceans and Fisheries Co-occurrence off the Coasts of Ghana and Côte d’Ivoire (Gulf of Guinea)

    Get PDF
    Within the Gulf of Guinea high levels of fisheries-related cetacean mortality (bycatch and direct-capture) has been documented. For locally rare species such removals could potentially lead to significant population level effects. However, information on the cetacean abundance and distribution is scarce. Similarly, it remains largely unreported where fishing fleets operate offshore. A cetacean survey took place during geophysical surveys (2013–2014) along the coasts of Ghana and Côte d’Ivoire. This provided a unique opportunity to study both offshore cetacean and fishing communities. Due to large group-sizes, melon-headed whales were the most abundant (0.34 animals km−1) followed by Fraser’s dolphins and short-finned pilot whales. Range state records were confirmed for melon-headed whale and Fraser’s dolphin in Ivoirian waters and ten further species represented first at-sea sightings. The artisanal fishing canoe was most abundant (92% of all vessels) and recorded up to 99.5 km from the Ghanaian coast. Asian trawlers operated over shelf areas and tuna purse-seine vessels in deep oceanic and slope waters. Fraser’s dolphins, melon-headed whales, pantropical spotted dolphins, bottlenose dolphins, and pilot whales were recorded in areas with the highest fishing densities. Melon-headed whales, pilot whales, and rough-toothed dolphins were observed in vicinity of trawlers; bottlenose dolphins, pantropical spotted dolphins, and pilot whales in vicinity of canoes. Some notable differences were found in the species composition between the present surveys and port-based surveys of landed cetaceans (bycatch/direct-captures). These may be explained by (1) feeding strategies (nocturnal vs. diurnal; surface vs. deep water); (2) different attractions to vessels/fishing gear; (3) variable body sizes; and (4) difficulty to positively identify species. Despite these differences, both cetaceans and fishing vessels predominantly occurred in shelf and slope waters (\u3c 1000m depth contour), making fishery-related mortality likely. The poor knowledge on population trends of cetaceans in this unique upwelling region, together with a high demand for cetacean products for human consumption (as “marine bushmeat”) may lead to a potential decline of some species that may go unnoticed. These new insights can provide a foundation for the urgently required risk assessments of cetacean mortality in fisheries within the northern Gulf of Guinea
    corecore